Abstract
Automated segmentation of retinal blood vessels is necessary for the diagnosis, monitoring, and treatment planning of the disease. Although current U-shaped structure models have achieved outstanding performance, some challenges still emerge due to the nature of this problem and mainstream models. (1) There does not exist an effective framework to obtain and incorporate features with different spatial and semantic information at multiple levels. (2) The fundus retina images coupled with high-quality blood vessel segmentation are relatively rare. (3) The information on edge regions, which are the most difficult parts to segment, has not received adequate attention. In this work, we propose a novel encoder–decoder architecture based on the multi-task learning paradigm to tackle these challenges. The shared image encoder is regularized by conducting the reconstruction task in the VQ-VAE (Vector Quantized Variational AutoEncoder) module branch to improve the generalization ability. Meanwhile, hierarchical representations are generated and integrated to complement the input image. The edge attention module is designed to make the model capture edge-focused feature representations via deep supervision, focusing on the target edge regions that are most difficult to recognize. Extensive evaluations of three publicly accessible datasets demonstrate that the proposed model outperforms the current state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.