Abstract
Schizophrenia is a complex mental disorder associated with a change in the functional and structural of the brain. Accurate automatic diagnosis of schizophrenia is crucial and still a challenge. In this paper, we propose an automatic diagnosis of schizophrenia disorder method based on the fusion of different neuroimaging features and a deep learning architecture. We propose a deep-multimodal fusion (DMMF) architecture based on gated recurrent unit (GRU) network and 2D-3D convolutional neural networks (CNN). The DMMF model combines functional connectivity (FC) measures extracted from functional magnetic resonance imaging (fMRI) data and low-level features obtained from fMRI, magnetic resonance imaging (MRI), or diffusion tensor imaging (DTI) data and creates latent and discriminative feature maps for classification. The fusion of ROI-based FC with fractional anisotropy (FA) derived from DTI images achieved state-of-theart diagnosis-accuracy of 99.50% and an area under the curve (AUC) of 99.7% on COBRE dataset. The results are promising for the combination of features. The high accuracy and AUC in our experiments show that the proposed deep learning architecture can extract latent patterns from neuroimaging data and can help to achieve accurate classification of schizophrenia and healthy groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.