Abstract
Deep metric learning has been widely used for image retrieval and verification tasks. Traditional contrastive loss and triplet loss depend highly on the selection of pair/triplet images. It makes the training process unstable and uncomplete. In this paper, we propose a novel global level loss function that considers histograms for intra distances within class and inter distances between different classes. We compared two forms of global level loss (hard selection based loss and soft selection based loss) and both achieved better result than traditional triplet loss, multi-class N pair loss and other related works. The experiment is conducted on the person re-identification dataset Market 1501 and DukeMTMC-reID.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.