Abstract
Global Navigation Satellite System (GNSS)- and Remote Sensing (RS)-based Earth observations have a significant approach on the monitoring of natural disasters. Since the evolution and appearance of earthquake precursors exhibit complex behavior, the need for different methods on multiple satellite data for earthquake precursors is vital for prior and after the impending main shock. This study provided a new approach of deep machine learning (ML)-based detection of ionosphere and atmosphere precursors. In this study, we investigate multi-parameter precursors of different physical nature defining the states of ionosphere and atmosphere associated with the event in Japan on 13 February 2021 (Mw 7.1). We analyzed possible precursors from surface to ionosphere, including Sea Surface Temperature (SST), Air Temperature (AT), Relative Humidity (RH), Outgoing Longwave Radiation (OLR), and Total Electron Content (TEC). Furthermore, the aim is to find a possible pre-and post-seismic anomaly by implementing standard deviation (STDEV), wavelet transformation, the Nonlinear Autoregressive Network with Exogenous Inputs (NARX) model, and the Long Short-Term Memory Inputs (LSTM) network. Interestingly, every method shows anomalous variations in both atmospheric and ionospheric precursors before and after the earthquake. Moreover, the geomagnetic irregularities are also observed seven days after the main shock during active storm days (Kp > 3.7; Dst < −30 nT). This study demonstrates the significance of ML techniques for detecting earthquake anomalies to support the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) mechanism for future studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.