Abstract

Fine-grained recognition emphasizes the identification of subtle differences among object categories given objects that appear in different shapes and poses. These variances should be reduced for reliable recognition. We propose a fine-grained recognition system that incorporates localization, segmentation, alignment, and classification in a unified deep neural network. The input to the classification module includes functions that enable backward-propagation (BP) in constructing the solver. Our major contribution is to propose a valve linkage function (VLF) for BP chaining and form our deep localization, segmentation, alignment, and classification (LSAC) system. The VLF can adaptively compromise errors of classification and alignment when training the LSAC model. It in turn helps to update the localization and segmentation. We evaluate our framework on two widely used fine-grained object data sets. The performance confirms the effectiveness of our LSAC system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.