Abstract

We present precision CCD photometry, a period study, and a two-color simultaneous Wilson code solution of the short-period contact binary CK Bootis. The asymmetric light curves were modeled by a dark spot on the primary component. The result identifies that CK Boo is an A-type W UMa binary with a high fillout of f = 71.7(+/- 4.4)%. From the O-C curve, it is found that the orbital period changes in a complicated mode, i.e., a long-term increase with two sinusoidal variations. One cyclic oscillation with a period of 10.67(+/- 0.20) yr may result from magnetic activity cycles, which are identified by the variability of Max. I - Max. II. Another sinusoidal variation (i.e., A = 0.0131 days(+/- 0.0009 days) and P-3 = 24.16(+/- 0.64) yr) may be attributed to the light-time effect due to a third body. This kind of additional companion can extract angular momentum from the central binary system. The orbital period secularly increases at a rate of dP/dt = +9.79(+/- 0.80) x 10(-8) days yr(-1), which may be interpreted by conservative mass transfer from the secondary to the primary. This kind of deep, low-mass ratio overcontact binaries may evolve into a rapid-rotating single star, only if the contact configuration do not break down at J(spin) > (1/3)J(orb).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call