Abstract

Deep long-period earthquakes (DLPs) are an enigmatic type of volcanic seismicity that sometimes precedes eruptions but mostly occurs at quiescent volcanoes. These earthquakes are depleted in high-frequency content and typically occur near the base of the crust. We observed a near-periodic, long-lived sequence of more than one million DLPs in the past 19 years beneath the dormant postshield Mauna Kea volcano in Hawai'i. We argue that this DLP sequence was caused by repeated pressurization of volatiles exsolved through crystallization of cooling magma stalled beneath the crust. This "second boiling" of magma is a well-known process but has not previously been linked to DLP activity. Our observations suggest that, rather than portending eruptions, global DLP activity may more commonly be indicative of stagnant, cooling magma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.