Abstract

Light field (LF) imaging expands traditional imaging techniques by simultaneously capturing the intensity and direction information of light rays, and promotes many visual applications. However, owing to the inherent trade-off between the spatial and angular dimensions, LF images acquired by LF cameras usually suffer from low spatial resolution. Many current approaches increase the spatial resolution by exploring the four-dimensional (4D) structure of the LF images, but they have difficulties in recovering fine textures at a large upscaling factor. To address this challenge, this paper proposes a new deep learning-based LF spatial super-resolution method using heterogeneous imaging (LFSSR-HI). The designed heterogeneous imaging system uses an extra high-resolution (HR) traditional camera to capture the abundant spatial information in addition to the LF camera imaging, where the auxiliary information from the HR camera is utilized to super-resolve the LF image. Specifically, an LF feature alignment module is constructed to learn the correspondence between the 4D LF image and the 2D HR image to realize information alignment. Subsequently, a multi-level spatial-angular feature enhancement module is designed to gradually embed the aligned HR information into the rough LF features. Finally, the enhanced LF features are reconstructed into a super-resolved LF image using a simple feature decoder. To improve the flexibility of the proposed method, a pyramid reconstruction strategy is leveraged to generate multi-scale super-resolution results in one forward inference. The experimental results show that the proposed LFSSR-HI method achieves significant advantages over the state-of-the-art methods in both qualitative and quantitative comparisons. Furthermore, the proposed method preserves more accurate angular consistency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.