Abstract

Deep-level transient spectroscopy measurements were utilized to investigate deep-level defects in metal–organic chemical vapor deposition-grown, unintentionally doped p-type InGaAsN films lattice matched to GaAs. The as-grown material displayed a high concentration of deep levels distributed within the band gap, with a dominant hole trap at Ev+0.10 eV. Postgrowth annealing simplified the deep-level spectra, enabling the identification of three distinct hole traps at 0.10, 0.23, and 0.48 eV above the valence-band edge, with concentrations of 3.5×1014, 3.8×1014, and 8.2×1014 cm−3, respectively. A direct comparison between the as-grown and annealed spectra revealed the presence of an additional midgap hole trap, with a concentration of 4×1014 cm−3 in the as-grown material. The concentration of this trap is sharply reduced by annealing, which correlates with improved material quality and minority-carrier properties after annealing. Of the four hole traps detected, only the 0.48 eV level is not influenced by annealing, suggesting this level may be important for processed InGaAsN devices in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.