Abstract
Nitrogen is commonly implanted in silicon to suppress the diffusion of self-interstitials and the formation of voids through the creation of nitrogen-vacancy complexes and nitrogen-nitrogen pairs. Yet, identifying a specific N-related defect via spectroscopic means has proven to be non-trivial. Activation energies obtained from deep-level transient spectroscopy are often assigned to a subset of possible defects that include non-equivalent atomic structures, such as the substitutional nitrogen and the nitrogen-vacancy complex. Paramagnetic N-related defects were the object of several electron paramagnetic spectroscopy investigations which assigned the so-called SL5 signal to the presence of substitutional nitrogen (NSi). Nevertheless, its behaviour at finite temperatures has been imprecisely linked to the metastability of the NSi center. In this work, we build upon the robust identification of the SL5 signature and we establish a theoretical picture of the substitutional nitrogen. Through an understanding of its symmetry-breaking mechanism, we provide a model of its fundamental physical properties (e.g., its energy landscape) based on ab initio calculations. Moreover by including more refined density functional theory-based approaches, we calculate EPR parameters (↔g and ↔A tensors), elucidating the debate on the metastability of NSi. Finally, by computing thermodynamic charge transition levels within the GW method, we present reference values for the donor and acceptor levels of NSi.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.