Abstract
A gallium interstitial defect is thought to be responsible for the spectacular spin-dependent recombination in GaAs_{1-x}N_{x} dilute nitrides. Current understanding associates this defect with at least two in-gap levels corresponding to the (+/0) and (++/+) charge-state transitions. Using a spin-sensitive photoinduced current transient spectroscopy, the in-gap electronic structure of a x=0.021 alloy is revealed. The (+/0) state lies ≈0.27 eV below the conduction band edge, and an anomalous, negative activation energy reveals the presence of not one but two other in-gap states. The observations are consistent with a (++/+) state ≈0.19 eV above the valence band edge, and a (+++/++) state ≈25 meV above the valence band edge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.