Abstract

We performed 1—2 keVcathodoluminescence measurements and He-Ne and HeCd excited photoluminescence studies of ZnSe/GaAs( 100) heterostructures grown by molecular beam epitaxy. Our goal was to investigate the deep level electronic structure and its connection with the heterojunction band offsets. We observed novel deep level emission features at 0.8, 0.98, 1.14, and 1.3 eV which are characteristic of the ZnSe overlayer and independent in energy of overlayer thickness. The corresponding deep levels lie far below those of the near-bandedge features commonly used to characterize the ZnSe crystal quality. The relative intensity and spatial distribution of the deep level emission was found to be strongly affected by the Zn/Se atomic flux ratio employed during ZnSe growth. The same flux ratio has been shown to influence both the quality of the ZnSe overlayer and the band offset in ZnSe/GaAs heterojunctions. In heterostructures fabricated in Se-rich growth conditions, that minimize the valence band offset and the concentration of Se vacancies, the dominant deep level emission is at 1.3 eV. For heterostructures fabricated in Zn-rich growth conditions, emission by multiple levels at 0.88,0.98, and 1.14 eV dominates. The spectral energies and intensities of deep level transitions reported here provide a characteristic indicator of ZnSe epilayer stoichiometry and near-interface defect densities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call