Abstract

Deep level defects in n-type epitaxial GaN compensated with Mg were measured using photocapacitance spectroscopy on Schottky barrier diodes. The doped GaN was prepared by atmospheric pressure metalorganic vapor phase epitaxy using bis(cyclopentadienyl)magnesium as the dopant source. The Mg-doped GaN films were n type as determined by Hall-effect measurements. Addition of magnesium resulted in the formation of a series of deep centers with optical threshold energies of 1.0, 1.2, 1.8, and 3.1 eV. Upon annealing the Mg compensated GaN in nitrogen at 850 °C the midgap levels disappeared and only the trapping level at 3.1 eV remained. The midgap levels are ascribed to Mg dopant complexes which may be responsible for low doping efficiency of Mg in the as-grown, doped GaN as well as its semi-insulating behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.