Abstract

PurposeTo develop a convolutional neural network (CNN) for the robust and fast correction of velocity aliasing in 4D‐flow MRI.MethodsThis study included 667 adult subjects with aortic 4D‐flow MRI data with existing velocity aliasing (n = 362) and no velocity aliasing (n = 305). Additionally, 10 controls received back‐to‐back 4D‐flow scans with systemically varied velocity‐encoding sensitivity (vencs) at 60, 100, and 175 cm/s. The no‐aliasing data sets were used to simulate velocity aliasing by reducing the venc to 40%–70% of the original, alongside a ground truth locating all aliased voxels (153 training, 152 testing). The 152 simulated and 362 existing aliasing data sets were used for testing and compared with a conventional velocity antialiasing algorithm. Dice scores were calculated to quantify CNN performance. For controls, the venc 175‐cm/s scans were used as the ground truth and compared with the CNN‐corrected venc 60 and 100 cm/s data setsResultsThe CNN required 176 ± 30 s to perform compared with 162 ± 14 s for the conventional algorithm. The CNN showed excellent performance for the simulated data compared with the conventional algorithm (median range of Dice scores CNN: [0.89–0.99], conventional algorithm: [0.84–0.94], p < 0.001, across all simulated vencs) and detected more aliased voxels in existing velocity aliasing data sets (median detected CNN: 159 voxels [31–605], conventional algorithm: 65 [7–417], p < 0.001). For controls, the CNN showed Dice scores of 0.98 [0.95–0.99] and 0.96 [0.87–0.99] for venc = 60 cm/s and 100 cm/s, respectively, while flow comparisons showed moderate‐excellent agreement.ConclusionDeep learning enabled fast and robust velocity anti‐aliasing in 4D‐flow MRI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call