Abstract
To demonstrate the effectiveness of automatic segmentation of diffuse large B-cell lymphoma (DLBCL) in 3D FDG-PET scans using a deep learning approach and validate its value in prognosis in an external validation cohort. Two PET datasets were retrospectively analysed: 297 patients from a local centre for training and 117 patients from an external centre for validation. A 3D U-Net architecture was trained on patches randomly sampled within the PET images. Segmentation performance was evaluated by six metrics, including the Dice similarity coefficient (DSC), Jaccard similarity coefficient (JSC), sensitivity (Se), positive predictive value (PPV), Hausdorff distance 95 (HD 95), and average symmetric surface distance (ASSD). Finally, the prognostic value of predictive total metabolic tumour volume (pTMTV) was validated in real clinical applications. The mean DSC, JSC, Se, PPV, HD 95, and ASSD (with standard deviation) for the validation cohort were 0.78 ± 0.25, 0.69 ± 0.26, 0.81 ± 0.27, 0.82 ± 0.25, 24.58 ± 35.18, and 4.46 ± 8.92, respectively. The mean ground truth TMTV (gtTMTV) and pTMTV were 276.6 ± 393.5 cm3 and 301.9 ± 510.5 cm3 in the validation cohort, respectively. Perfect homogeneity in the Bland-Altman analysis and a strong positive correlation in the linear regression analysis (R2 linear = 0.874, p < 0.001) were demonstrated between gtTMTV and pTMTV. pTMTV (≥ 201.2 cm3) (PFS: HR = 3.097, p = 0.001; OS: HR = 6.601, p < 0.001) was shown to be an independent factor of PFS and OS. The FCN model with a U-Net architecture can accurately segment lymphoma lesions and allow fully automatic assessment of TMTV on PET scans for DLBCL patients. Furthermore, pTMTV is an independent prognostic factor of survival in DLBCL patients. •The segmentation model based on a U-Net architecture shows high performance in the segmentation of DLBCL patients on FDG-PET images. •The proposed method can provide quantitative information as a predictive TMTV for predicting the prognosis of DLBCL patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.