Abstract
Abstract This journal paper explores the application of Deep Learning (DL)-based Time-Series Classification (TSC) algorithms in ultrasonic testing for pipeline inspection. The utility of Electromagnetic Acoustic Transducers (EMAT) as a non-contact ultrasonic testing technique for compact robotic platforms is emphasized, prioritizing computational efficiency in defect detection over pinpoint accuracy. To address limited sample availability, the study conducts benchmarking of four methods to enable comparative evaluation of classification times. The core of the DL-based TSC approach involves training DL models using varied proportions (60%, 80%, and 100%) of the available training dataset. This investigation demonstrates the adaptability of DL-enabled anomaly detection with shifting data sizes, showcasing the AI-driven process's robustness in identifying pipeline irregularities. The outcomes underscore the pivotal role of artificial intelligence (AI) in facilitating semi-accurate but swift anomaly detection, thereby streamlining subsequent focused inspections on pipeline areas of concern. By synergistically integrating EMAT technology and DL-driven TSC, this research contributes to enhancing the precision and near real-time inspection capabilities of pipeline assessment. This investigation collectively highlights the potential of DL networks to revolutionize pipeline inspection by rapidly and accurately analyzing ultrasound waveform data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.