Abstract

In this work, deep learning-based approaches are proposed to provide promising solutions to address the challenges in realizing intelligent manufacturing and digital twins for directed energy deposition (DED) process. Firstly, a rapid and accurate prediction of part temperature is realized by innovatively combining graph neural networks (GNNs) and recurrent neural networks (RNNs). Twenty parts with different structures are selected for demonstration. GPU parallel computing technique is adopted to accelerate the thermal finite element analysis, which is used to quickly construct the simulated graph dataset with sufficient samples. By embedding the memory optimization method into the GNN block, deeper GNNs with more trainable parameters are successfully trained with a 79.4% lower GPU memory footprint, which solves the difficulty of deeper GNNs are hard to train on large graph datasets, and the accuracy of temperature prediction on unseen DED parts is significantly improved. Secondly, for intelligent molten pool regulation, a semi-analytic temperature solution method is used to create an efficient DED environment in reinforcement learning (RL) workflows. The intelligent control of molten pool depth under complex deposition strategy is realized based on the environmental state represented by molten pool images. A tailored convolutional neural networks (CNNs) model is employed as the agent to output varying laser power and continuously interact with the dynamic environment. Compared with the traditional artificial neural network agent, the total reward scored by the CNN agent is improved by 9.7% in the zigzag deposition process, mitigating the fluctuations in the controlled molten pool depths. Moreover, CNNs are more compatible with in-situ thermal images. This work can provide theoretical and technical support for realizing real-time and even ahead-of-time temperature prediction and the corresponding feedback control during DED process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.