Abstract

PurposeThis study aimed to construct a predictive model integrating deep learning-derived radiomic features from computed tomography angiography (CTA) and clinical biomarkers to forecast postoperative adverse events (AEs) in patients with acute uncomplicated Stanford type B aortic dissection (uTBAD) undergoing initial thoracic endovascular aortic repair (TEVAR). MethodsWe retrospectively evaluated 369 patients treated with TEVAR for acute uTBAD from January 2015 to December 2022. A three-dimensional (3D) deep convolutional neural network (CNN) automated radiomic feature extraction from CTA images. Feature selection, using Analysis of Variance (ANOVA) and the Least Absolute Shrinkage and Selection Operator (LASSO) algorithms, refined a radiomic score (Rad-Score). This score, alongside clinical parameters, was modelled via Extreme Gradient Boosting (XGBoost) analysis. Model calibration was assessed by calibration curves. ResultsThe integration of the Rad-Score with clinical factors including albumin and C-reactive protein levels moderately enhanced predictive efficiency, exhibiting an area under the curve (AUC) of 1.000 (95%CI, 1.000–1.000) in the training cohort and 0.990 (95%CI, 0.966–1.000) in the internal validation cohort. In an independent validation cohort from another hospital, the combined model yielded an AUC of 0.985 (95%CI, 0.965–1.000), with an accuracy, precision, sensitivity, and specificity of 0.92, 0.92, 0.94, and 0.91, respectively. ConclusionsThe synergistic application of deep learning-based radiomics from CTA and clinical indicators holds promise for anticipating AEs post-initial thoracic endovascular aortic repair in patients with acute uTBAD. The clinical utility of the constructed combined model, offering prognostic foresight during follow-up, has been substantiated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.