Abstract
Constrained by the substantial computational time required for numerical simulation, a deep learning technique is applied to investigate fluid flow and heat transfer processes in metal foam with a hierarchical pore structure. This work adopted a 3D convolutional neural network (CNN) combining U-Net architecture to predict velocity and temperature distributions, alongside corresponding permeability and overall heat transfer coefficient. This approach demonstrates excellent capability in intricate image segmentation. The training sets were acquired by lattice Boltzmann method (LBM) simulations. The CNN model, trained on a substantial amount of data, demonstrates remarkable precision, exhibiting mean relative errors of 0.57% for permeability prediction and 2.27% for overall heat transfer coefficient prediction. Moreover, in CNN prediction, a broader range of structure parameters and boundary conditions beyond those in the training set was used to evaluate the practicability of the trained CNN model. In contrast to numerical simulation, the CNN model economizes approximately 95.41% and 99.57% of computational time for velocity and temperature distribution prediction, respectively, providing a novel approach for exploring transport processes in metal foam with hierarchical pore structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.