Abstract

ObjectiveThe most widespread and intrusive cancer type among women is breast cancer. Globally, this type of cancer causes more mortality among women, next to lung cancer. This made the researchers to focus more on developing effective Computer-Aided Detection (CAD) methodologies for the classification of such deadly cancer types. In order to improve the rate of survival and earlier diagnosis, an optimistic research methodology is required in the classification of breast cancer. Consequently, an improved methodology that integrates the principle of deep learning with metaheuristic and classification algorithms is proposed for the severity classification of breast cancer. Hence to enhance the recent findings, an improved CAD methodology is proposed for redressing the healthcare problem. Material and MethodsThe work intends to cast a light-of-research towards classifying the severities present in digital mammogram images. For evaluating the work, the publicly available MIAS, INbreast, and WDBC databases are utilized. The proposed work employs transfer learning for extricating the features. The novelty of the work lies in improving the classification performance of the weighted k-nearest neighbor (wKNN) algorithm using particle swarm optimization (PSO), dragon-fly optimization algorithm (DFOA), and crow-search optimization algorithm (CSOA) as a transformation technique i.e., transforming non-linear input features into minimal linear separable feature vectors. ResultsThe results obtained for the proposed work are compared then with the Gaussian Naïve Bayes and linear Support Vector Machine algorithms, where the highest accuracy for classification is attained for the proposed work (CSOA-wKNN) with 84.35% for MIAS, 83.19% for INbreast, and 97.36% for WDBC datasets respectively. ConclusionThe obtained results reveal that the proposed Computer-Aided-Diagnosis (CAD) tool is robust for the severity classification of breast cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.