Abstract

In recent years, the Internet-of-Things (IoT) technology is being used in many application areas such as healthcare, video surveillance, transportation etc. The massive adoption and growth of IoT in these areas are generating a massive amount of data. For example, IoT devices such as cameras are generating a huge amount of images when used in hospital surveillance scenarios. Here, face recognition is an important element that can be used for securing hospital facilities, emotion detection and sentiment analysis of patients, detecting patient fraud, and hospital traffic pattern analysis. Automatic and intelligent face recognition systems have high accuracy in a controlled environment; however, they have low accuracy in an uncontrolled environment. Also, the systems need to operate in real-time in many applications such as smart healthcare. This paper suggests a tree-based deep model for automatic face recognition in a cloud environment. The proposed deep model is computationally less expensive without compromising the accuracy. In the model, an input volume is split into several volumes, where a tree is constructed for each volume. A tree is defined by its branching factor and height. Each branch is represented by a residual function, which is constituted by a convolutional layer, a batch normalization, and a non-linear function. The proposed model is evaluated in various publicly available databases. A comparison of performance is also done with state-of-the-art deep models for face recognition. The results of the experiments demonstrate that the proposed model achieved accuracies of 98.65%, 99.19%, 95.84% on FEI, ORL, and LFW databases, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.