Abstract

This paper presents an end-to-end deep convolutional neural network (CNN) model for carrier signal detection in the broadband power spectrum, so-called spectrum center net (SCN). By regarding the broadband power spectrum sequence as a one-dimensional (1D) image and each subcarrier on the broadband as the target object, we can transform the carrier signal detection problem into a semantic segmentation problem on a 1D image. Here, the core task of the carrier signal detection problem turns into the frequency center (FC) and bandwidth (BW) regression. We design the SCN to classify the broadband power spectrum as inputs and extract the features of different length scales by the ResNet backbone. Then, the feature pyramid network (FPN) neck fuses the features and outputs the fusion features. Next, the RegNet head regresses the power spectrum distribution (PSD) prediction for FC and the corresponding BW prediction. Finally, we can achieve the subcarrier targets by applying non-maximum suppressions (NMS). Moreover, we train the SCN on a simulation dataset and validate it on a real satellite broadband power spectrum set. As an improvement of the fully convolutional network-based (FCN-based) method, the proposed method directly outputs the detection results without post-processing. Extensive experimental results demonstrate that the proposed method can effectively detect the subcarrier signal in the broadband power spectrum as well as achieve higher and more robust performance than the deep FCN- and threshold-based methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.