Abstract

The prefiltered image was imported into the local higher-order singular value decomposition (HOSVD) denoising algorithm (GL-HOSVD)-optimized diffusion-weighted imaging (DWI) image, which was compared with the deviation correction nonlocal mean (NL mean) and low-level edge algorithm (LR + edge). Regarding the peak signal-to-noise ratio (PSNR), root mean square error (RMSE), sensitivity, specificity, accuracy, and consistency, the application effect of the GL-HOSVD algorithm in DWI was investigated, and its adoption effect in the examination of ischemic penumbra (IP) of early acute cerebral infarction (ACI) patients was evaluated. A total of 210 patients with ACI were selected as the research subjects, who were randomly rolled into two groups. Those who were checked by conventional DWI were set as the control group, and those who used DWI based on the GL-HOSVD denoising algorithm were set as the observation group, with 105 people in each. Positron emission tomography (PET) test results were set as the gold standard to evaluate the application value of the two examination methods. It was found that under different noise levels, the peak signal-to-noise ratio (PSNR) of the GL-HOSVD algorithm and the root mean square error (RMSE) of the FA parameter were better than those of the nonlocal means (NL-means) of deviation correction and low-rank edge algorithm (LR + edge). The sensitivity, specificity, accuracy, and consistency (8.76%, 81.25%, 87.62%, and 0.52) of the observation group were higher than those of the control group (57.78%, 53.33%, 57.14%, and 0.35) (P < 0.05). Moreover, the apparent diffusion coefficient (ADC) of the DWI images of the observation group was basically consistent with that of the PET images, while the control group had a poor display effect and low definition. In summary, under different noise levels, the GL-HOSVD algorithm had a good denoising effect and greatly reduced fringe artifacts. DWI after denoising had high sensitivity, specificity, accuracy, and consistency in the detection of IP, which was worthy of clinical application and promotion.

Highlights

  • Academic Editor: Yuvaraja Teekaraman e prefiltered image was imported into the local higher-order singular value decomposition (HOSVD) denoising algorithm (GLHOSVD)-optimized diffusion-weighted imaging (DWI) image, which was compared with the deviation correction nonlocal mean (NL mean) and low-level edge algorithm (LR + edge)

  • DWI after denoising had high sensitivity, specificity, accuracy, and consistency in the detection of ischemic penumbra (IP), which was worthy of clinical application and promotion

  • It was found that under different noise levels, the peak signal-to-noise ratio (PSNR) and FA-root mean square error (RMSE) values of the GL-HOSVD algorithm were better than the NL-Means and LR + Edge algorithms

Read more

Summary

Introduction

Academic Editor: Yuvaraja Teekaraman e prefiltered image was imported into the local higher-order singular value decomposition (HOSVD) denoising algorithm (GLHOSVD)-optimized diffusion-weighted imaging (DWI) image, which was compared with the deviation correction nonlocal mean (NL mean) and low-level edge algorithm (LR + edge). Regarding the peak signal-to-noise ratio (PSNR), root mean square error (RMSE), sensitivity, specificity, accuracy, and consistency, the application effect of the GL-HOSVD algorithm in DWI was investigated, and its adoption effect in the examination of ischemic penumbra (IP) of early acute cerebral infarction (ACI) patients was evaluated. Erefore, in this study, DWI images based on the GLHOSVD denoising algorithm were used to examine the IP of patients with early ACI, and the accuracy of the examination results was evaluated. It aimed to provide more effective examination methods for patients with early cerebral infarction and provide more possibilities for early diagnosis and treatment of patients

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.