Abstract

The evaluation of brain tumor recurrence after surgery is based on the comparison between tumor regions on pre-operative and follow-up magnetic resonance imaging (MRI) scans in clinical practice. Accurate alignment of MRI scans is important in this evaluation process. However, existing methods often fail to yield accurate alignment due to substantial appearance and shape changes of tumor regions. The study aimed to improve this misalignment situation through multimodal information and compensation for shape changes. In this work, a deep learning-based deformation registration method using bilateral pyramid to create multi-scale image features was developed. Moreover, morphology operations were employed to build correspondence between the surgical resection on the follow-up and pre-operative MRI scans. Compared with baseline methods, the proposed method achieved the lowest mean absolute error of 1.82 mm on the public BraTS-Reg 2022 dataset. The results suggest that the proposed method is potentially useful for evaluating tumor recurrence after surgery. We effectively verified its ability to extract and integrate the information of the second modality, and also revealed the micro representation of tumor recurrence. This study can assist doctors in registering multiple sequence images of patients, observing lesions and surrounding areas, analyzing and processing them, and guiding doctors in their treatment plans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call