Abstract

BACKGROUND. Computer-aided diagnosis (CAD) systems for breast ultrasound interpretation have been primarily evaluated at tertiary and/or urban medical centers by radiologists with breast ultrasound expertise. OBJECTIVE. The purpose of this study was to evaluate the usefulness of deep learning-based CAD software on the diagnostic performance of radiologists without breast ultrasound expertise at secondary or rural hospitals in the differentiation of benign and malignant breast lesions measuring up to 2.0 cm on ultrasound. METHODS. This prospective study included patients scheduled to undergo biopsy or surgical resection at any of eight participating secondary or rural hospitals in China of a breast lesion classified as BI-RADS category 3-5 on prior breast ultrasound from November 2021 to September 2022. Patients underwent an additional investigational breast ultrasound, performed and interpreted by a radiologist without breast ultrasound expertise (hybrid body/breast radiologists, either who lacked breast imaging subspecialty training or for whom the number of breast ultrasounds performed annually accounted for less than 10% of all ultrasounds performed annually by the radiologist), who assigned a BI-RADS category. CAD results were used to upgrade reader-assigned BI-RADS category 3 lesions to category 4A and to downgrade reader-assigned BI-RADS category 4A lesions to category 3. Histologic results of biopsy or resection served as the reference standard. RESULTS. The study included 313 patients (mean age, 47.0 ± 14.0 years) with 313 breast lesions (102 malignant, 211 benign). Of BI-RADS category 3 lesions, 6.0% (6/100) were upgraded by CAD to category 4A, of which 16.7% (1/6) were malignant. Of category 4A lesions, 79.1% (87/110) were downgraded by CAD to category 3, of which 4.6% (4/87) were malignant. Diagnostic performance was significantly better after application of CAD, in comparison with before application of CAD, in terms of accuracy (86.6% vs 62.6%, p < .001), specificity (82.9% vs 46.0%, p < .001), and PPV (72.7% vs 46.5%, p < .001) but not significantly different in terms of sensitivity (94.1% vs 97.1%, p = .38) or NPV (96.7% vs 97.0%, p > .99). CONCLUSION. CAD significantly improved radiologists' diagnostic performance, showing particular potential to reduce the frequency of benign breast biopsies. CLINICAL IMPACT. The findings indicate the ability of CAD to improve patient care in settings with incomplete access to breast imaging expertise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.