Abstract

We aimed to investigate the value of deep learning (DL) models based on multimodal ultrasonographic (US) images to quantify RA activity. Static greyscale (SGS), dynamic greyscale (DGS), static power Doppler (SPD) and dynamic power Doppler (DPD) US images were collected and evaluated by two expert radiologists according to the EULAR-OMERACT Synovitis Scoring system. Four DL models were developed based on the ResNet-type structure, evaluated on two separate test cohorts, and finally compared with the performance of 12 radiologists with different levels of experience. In total, 1244 images were used for the model training, and 152 and 354 for testing (cohort 1 and 2, respectively). The best-performing models for the scores of 0/1/2/3 were the DPD, SGS, DGS and SPD models, respectively (Area Under the receiver operating characteristic Curve [AUC] = 0.87/0.95/0.74/0.95; no significant differences). All the DL models provided results comparable to the experienced radiologists on a per-image basis (intraclass correlation coefficient: 0.239-0.756, P < 0.05). The SPD model performed better than the SGS one on test cohort 1 (score of 0/2/3: AUC = 0.82/0.67/0.95 vs 0.66/0.66/0.75, respectively) and test cohort 2 (score of 0: AUC = 0.89 vs 0.81). The dynamic DL models performed better than the static ones in most of the scoring processes and were more accurate than the most of senior radiologists, especially the DPD model. DL models based on multimodal US images allow a quantitative and objective assessment of RA activity. Dynamic DL models in particular have potential value in assisting radiologists to improve the accuracy of RA US-based grading.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.