Abstract

PurposeTo train a convolutional neural network (CNN) model from scratch to automatically detect tuberculosis (TB) from chest X-ray (CXR) images and compare its performance with transfer learning based technique of different pre-trained CNNs.Material and methodsWe used two publicly available datasets of postero-anterior chest radiographs, which are from Montgomery County, Maryland, and Shenzhen, China. A CNN (ConvNet) from scratch was trained to automatically detect TB on chest radiographs. Also, a CNN-based transfer learning approach using five different pre-trained models, including Inception_v3, Xception, ResNet50, VGG19, and VGG16 was utilized for classifying TB and normal cases from CXR images. The performance of models for testing datasets was evaluated using five performances metrics, including accuracy, sensitivity/recall, precision, area under curve (AUC), and F1-score.ResultsAll proposed models provided an acceptable accuracy for two-class classification. Our proposed CNN architecture (i.e., ConvNet) achieved 88.0% precision, 87.0% sensitivity, 87.0% F1-score, 87.0% accuracy, and AUC of 87.0%, which was slightly less than the pre-trained models. Among all models, Exception, ResNet50, and VGG16 provided the highest classification performance of automated TB classification with precision, sensitivity, F1-score, and AUC of 91.0%, and 90.0% accuracy.ConclusionsOur study presents a transfer learning approach with deep CNNs to automatically classify TB and normal cases from the chest radiographs. The classification accuracy, precision, sensitivity, and F1-score for the detection of TB were found to be more than 87.0% for all models used in the study. Exception, ResNet50, and VGG16 models outperformed other deep CNN models for the datasets with image augmentation methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call