Abstract

Low-complexity detectors play an essential role in massive multiple-input multiple-output (MIMO) transmissions. In this work, we discuss the perspectives of utilizing approximate message passing (AMP) algorithm to the detection of massive MIMO transmission. To this end, we need to efficiently reduce the divergence occurrence in AMP iterations and bridge the performance gap that AMP has from the optimum detector while making use of its advantage of low computational load. Our solution is to build a neural network to learn and optimize AMP detection with four groups of specifically designed learn-able coefficients such that divergence rate and detection mean squared error (MSE) can be significantly reduced. Moreover, the proposed deep learning-based AMP has a much faster converging rate, and thus a much lower computational complexity than conventional AMP, providing an alternative solution for the massive MIMO detection. Extensive simulation experiments are provided to validate the advantages of the proposed deep learning-based AMP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call