Abstract

This study aimed to explore the feasibility of using a deep-learning (DL) approach to predict TIL levels in breast cancer (BC) from ultrasound (US) images. A total of 494 breast cancer patients with pathologically confirmed invasive BC from two hospitals were retrospectively enrolled. Of these, 396 patients from hospital 1 were divided into the training cohort (n = 298) and internal validation (IV) cohort (n = 98). Patients from hospital 2 (n = 98) were in the external validation (EV) cohort. TIL levels were confirmed by pathological results. Five different DL models were trained for predicting TIL levels in BC using US images from the training cohort and validated on the IV and EV cohorts. The overall best-performing DL model, the attention-based DenseNet121, achieved an AUC of 0.873, an accuracy of 79.5%, a sensitivity of 90.7%, a specificity of 65.9%, and an F1 score of 0.830 in the EV cohort. In addition, the stratified analysis showed that the DL models had good discrimination performance of TIL levels in each of the molecular subgroups. The DL models based on US images of BC patients hold promise for non-invasively predicting TIL levels and helping with individualized treatment decision-making.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call