Abstract
BackgroundFractures as a result of osteoporosis and low bone mass are common and give rise to significant clinical, personal, and economic burden. Even after a fracture occurs, high fracture risk remains widely underdiagnosed and undertreated. Common fracture risk assessment tools utilize a subset of clinical risk factors for prediction, and often require manual data entry. Furthermore, these tools predict risk over the long term and do not explicitly provide short-term risk estimates necessary to identify patients likely to experience a fracture in the next 1-2 years.ObjectiveThe goal of this study was to develop and evaluate an algorithm for the identification of patients at risk of fracture in a subsequent 1- to 2-year period. In order to address the aforementioned limitations of current prediction tools, this approach focused on a short-term timeframe, automated data entry, and the use of longitudinal data to inform the predictions.MethodsUsing retrospective electronic health record data from over 1,000,000 patients, we developed Crystal Bone, an algorithm that applies machine learning techniques from natural language processing to the temporal nature of patient histories to generate short-term fracture risk predictions. Similar to how language models predict the next word in a given sentence or the topic of a document, Crystal Bone predicts whether a patient’s future trajectory might contain a fracture event, or whether the signature of the patient’s journey is similar to that of a typical future fracture patient. A holdout set with 192,590 patients was used to validate accuracy. Experimental baseline models and human-level performance were used for comparison.ResultsThe model accurately predicted 1- to 2-year fracture risk for patients aged over 50 years (area under the receiver operating characteristics curve [AUROC] 0.81). These algorithms outperformed the experimental baselines (AUROC 0.67) and showed meaningful improvements when compared to retrospective approximation of human-level performance by correctly identifying 9649 of 13,765 (70%) at-risk patients who did not receive any preventative bone-health-related medical interventions from their physicians.ConclusionsThese findings indicate that it is possible to use a patient’s unique medical history as it changes over time to predict the risk of short-term fracture. Validating and applying such a tool within the health care system could enable automated and widespread prediction of this risk and may help with identification of patients at very high risk of fracture.
Highlights
Fractures due to osteoporosis and low bone mass are associated with a significant personal, clinical, and economic burden
Using retrospective electronic health record data from over 1,000,000 patients, we developed Crystal Bone, an algorithm that applies machine learning techniques from natural language processing to the temporal nature of patient histories to generate short-term fracture risk predictions
The model accurately predicted 1- to 2-year fracture risk for patients aged over 50 years
Summary
Fractures due to osteoporosis and low bone mass are associated with a significant personal, clinical, and economic burden. There remains a significant diagnosis and treatment gap for osteoporosis [1,2,4,12] When these fractures occur, they often result in a loss of independence for patients and can lead to functional disability, lower quality of life, and increased mortality [5,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38]. These tools predict risk over the long term and do not explicitly provide short-term risk estimates necessary to identify patients likely to experience a fracture in the 1-2 years
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.