Abstract

Message-passing algorithms based on the belief propagation (BP) equations constitute a well-known distributed computational scheme. They yield exact marginals on tree-like graphical models and have also proven to be effective in many problems defined on loopy graphs, from inference to optimization, from signal processing to clustering. The BP-based schemes are fundamentally different from stochastic gradient descent (SGD), on which the current success of deep networks is based. In this paper, we present and adapt to mini-batch training on GPUs a family of BP-based message-passing algorithms with a reinforcement term that biases distributions towards locally entropic solutions. These algorithms are capable of training multi-layer neural networks with performance comparable to SGD heuristics in a diverse set of experiments on natural datasets including multi-class image classification and continual learning, while being capable of yielding improved performances on sparse networks. Furthermore, they allow to make approximate Bayesian predictions that have higher accuracy than point-wise ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.