Abstract

ABSTRACT Gravitationally lensed sources may have unresolved or blended multiple images, and for time varying sources, the light curves from individual images can overlap. We use convolutional neural nets to both classify the light curves as due to unlensed, double, or quad lensed sources and fit for the time delays. Focusing on lensed supernova systems with time delays Δt ≳ 6 d, we achieve 100 per cent precision and recall in identifying the number of images and then estimating the time delays to σΔt ≈ 1 d, with a 1000× speedup relative to our previous Monte Carlo technique. This also succeeds for flux noise levels $\sim 10{{\ \rm per\ cent}}$. For Δt ∈ [2, 6] d, we obtain 94–98 per cent accuracy, depending on image configuration. We also explore using partial light curves where observations only start near maximum light, without the rise time data, and quantify the success.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.