Abstract
BackgroundThe predictive role of chest radiographs in patients with suspected coronary artery disease (CAD) is underestimated and may benefit from artificial intelligence (AI) applications. ObjectivesTo train, test, and validate a deep learning (DL) solution for detecting significant CAD based on chest radiographs. MethodsData of patients referred for angina and undergoing chest radiography and coronary angiography were analysed retrospectively. A deep convolutional neural network (DCNN) was designed to detect significant CAD from posteroanterior/anteroposterior chest radiographs. The DCNN was trained for severe CAD binary classification (absence/presence). Coronary angiography reports were the ground truth. Stenosis severity of ≥70% for non–left main vessels and ≥ 50% for left main defined severe CAD. ResultsInformation of 7728 patients was reviewed. Severe CAD was present in 4091 (53%). Patients were randomly divided for algorithm training (70%; n = 5454) and fine-tuning/model validation (10%; n = 773). Internal clinical validation (model testing) was performed with the remaining patients (20%; n = 1501). At binary logistic regression, DCNN prediction was the strongest severe CAD predictor (p < 0.0001; OR: 1.040; CI: 1.032–1.048). Using a high sensitivity operating cut-point, the DCNN had a sensitivity of 0.90 to detect significant CAD (specificity 0.31; AUC 0.73; 95% CI DeLong, 0.69–0.76). Adding to the AI chest radiograph interpretation angina status improved the prediction (AUC 0.77; 95% CI DeLong, 0.74–0.80). ConclusionAI-read chest radiographs could be used to pre-test significant CAD probability in patients referred for suspected angina. Further studies are required to externally validate our algorithm, develop a clinically applicable tool, and support CAD screening in broader settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.