Abstract
Door access control systems are important to protect the security and integrity of physical spaces. Accuracy and speed are important factors that govern their performance. In this paper, we investigate a novel approach to identify users by measuring patterns of their interactions with a doorknob via an embedded accelerometer and gyroscope and by applying deep-learning-based algorithms to these measurements. Our identification results obtained from 47 users show an accuracy of 90.2%. When the sex of the user is used as an input feature, the accuracy is 89.8% in the case of male individuals and 97.0% in the case of female individuals. We study how the accuracy is affected by the sample duration, finding that is its possible to identify users using a sample of 0.5 s with an accuracy of 68.5%. Our results demonstrate the feasibility of using patterns of motor activity to provide access control, thus extending with it the set of alternatives to be considered for behavioral biometrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.