Abstract
Gaming disorder [GD] risk has been associated with the way gamers bond with their visual representation (i.e., avatar) in the game-world. More specifically, a gamer's relationship withtheir avatar has been shown to provide reliable mental health information about the user in their offline life, such as their current and prospective GD risk, if appropriately decoded. Tocontribute to the paucity of knowledge in this area, 565 gamers (Mage = 29.3 years; SD =10.6) were assessed twice, six months apart, using the User-Avatar-Bond Scale (UABS) and the Gaming Disorder Test. Aseries of tuned and untuned artificial intelligence [AI] classifiers analysed concurrently and prospectively their responses. Findings showed that AI models learned to accurately and automatically identify GD risk cases, based on gamers' reported UABS score, age, and length of gaming involvement, both concurrently and longitudinally (i.e., six months later). Random forests outperformed all other AIs, while avatar immersion was shown to be the strongest training predictor. Study outcomes demonstrated that the user-avatar bond can be translated into accurate, concurrent and future GD risk predictions using trained AI classifiers. Assessment, prevention, and practice implications are discussed in the light of these findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.