Abstract

Invertible promoters (invertons) are crucial regulatory elements in bacteria, facilitating gene expression changes under stress. Despite their importance, their prevalence and the range of regulated gene functions are largely unknown. We introduced DeepInverton, a deep learning model that identifies invertons across a broad phylogenetic spectrum without using sequencing reads. By analyzing 68 733 bacterial genomes and 9382 metagenomes, we have uncovered over 200 000 nonredundant invertons and have also highlighted their abundance in pathogens. Additionally, we identified a post-Cambrian Explosion increase of invertons, paralleling species diversification. Furthermore, we revealed that invertons regulate diverse functions, including antimicrobial resistance and biofilm formation, underscoring their role in environmental adaptation. Notably, the majority of inverton identifications by DeepInverton have been confirmed by the in vitro experiments. The comprehensive inverton profiles have deepened our understanding of invertons at pan-genome and pan-metagenome scales, enabling a broad spectrum of applications in microbial ecology and synthetic biology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.