Abstract

Abstract Line-intensity mapping is emerging as a novel method that can measure the collective intensity fluctuations of atomic/molecular line emission from distant galaxies. Several observational programs with various wavelengths are ongoing and planned, but there remains a critical problem of line confusion; emission lines originating from galaxies at different redshifts are confused at the same observed wavelength. We devise a generative adversarial network that extracts designated emission-line signals from noisy three-dimensional data. Our novel network architecture allows two input data, in which the same underlying large-scale structure is traced by two emission lines of H α and [Oiii], so that the network learns the relative contributions at each wavelength and is trained to decompose the respective signals. After being trained with a large number of realistic mock catalogs, the network is able to reconstruct the three-dimensional distribution of emission-line galaxies at z = 1.3−2.4. Bright galaxies are identified with a precision of 84%, and the cross correlation coefficients between the true and reconstructed intensity maps are as high as 0.8. Our deep-learning method can be readily applied to data from planned spaceborne and ground-based experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call