Abstract

To investigate whether deep learning reconstruction (DLR) provides improved cervical spine MR images using a 1.5 T unit in the evaluation of degenerative changes without increasing imaging time. This study included 21 volunteers (age 42.4 ± 11.9 years; 17 males) who underwent 1.5 T cervical spine sagittal T2-weighted MRI. From the imaging data with number of acquisitions (NAQ) of 1 or 2, images were reconstructed with DLR (NAQ1-DLR) and without DLR (NAQ1) or without DLR (NAQ2), respectively. Two readers evaluated the images for depiction of structures, artifacts, noise, overall image quality, spinal canal stenosis, and neuroforaminal stenosis. The two readers read studies blinded and randomly. Values were compared between NAQ1-DLR and NAQ1 and between NAQ1-DLR and NAQ2 using the Wilcoxon signed-rank test. The analyses showed significantly better results for NAQ1-DLR compared with NAQ1 and NAQ2 (p < 0.023), except for depiction of disc and foramina by one reader and artifacts by both readers in the comparison between NAQ1-DLR and NAQ2. Interobserver agreements (Cohen's weighted kappa [97.5% confidence interval]) in the evaluation of spinal canal stenosis for NAQ1-DLR/NAQ1/NAQ2 were 0.874 (0.866-0.883)/0.778 (0.767-0.789)/0.818 (0.809-0.827), respectively, and those in the evaluation of neuroforaminal stenosis were 0.878 (0.872-0.883)/0.855 (0.849-0.860)/0.852 (0.845-0.860), respectively. DLR improved the 1.5 T cervical spine MR images in the evaluation of degenerative spine changes. • Two radiologists demonstrated that deep learning reconstruction reduced the noise in cervical spine sagittal T2-weighted MR images obtained using a 1.5 T unit. • Reduced noise in deep learning reconstruction images resulted in a clearer depiction of structures, such as the spinal cord, vertebrae, and zygapophyseal joint. • Interobserver agreement in the evaluation of spinal canal stenosis and foraminal stenosis on cervical spine MR images was significantly improved using deep learning reconstruction (0.874 and 0.878, respectively) versus without deep learning (0.778-0.818 and 0.852-0.855, respectively).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.