Abstract
Low-keV virtual monoenergetic images (VMIs) of dual-energy computed tomography (CT) enhances iodine contrast for detecting small arteries like the Adamkiewicz artery (AKA), but image noise can be problematic. Deep-learning image reconstruction (DLIR) effectively reduces noise without sacrificing image quality. To evaluate whether DLIR on low-keV VMIs of dual-energy CT scans improves the visualization of the AKA. We enrolled 29 patients who underwent CT angiography before aortic repair. VMIs obtained at 70 and 40 keV were reconstructed using hybrid iterative reconstruction (HIR), and 40 keV VMIs were reconstructed using DLIR. The image noise of the spinal cord, the maximum CT values of the anterior spinal artery (ASA), and the contrast-to-noise ratio (CNR) of the ASA were compared. The overall image quality and the delineation of the AKA were evaluated on a 4-point score (1 = poor, 4 = excellent). The mean image noise of the spinal cord was significantly lower on 40-keV DLIR than on 40-keV HIR scans; they were significantly higher than on 70-keV HIR images. The CNR of the ASA was highest on the 40-keV DLIR images among the three reconstruction images. The mean image quality scores for 40-keV DLIR and 70-keV HIR scans were comparable, and higher than of 40-keV HIR images. The mean delineation scores for 40-keV HIR and 40-keV DLIR scans were significantly higher than for 70-keV HIR images. Visualization of the AKA was significantly better on low-keV VMIs subjected to DLIR than conventional HIR images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.