Abstract
<p>The seismic waves exhibit various types of attenuation while propagating through the subsurface, which is strongly related to the complexity of the earth. Anelasticity of the subsurface medium, which is quantified by the quality factor Q, causes dissipation of seismic energy. Attenuation distorts the phase of the seismic data and decays the higher frequencies in the data more than lower frequencies. Strong attenuation effect resulting from geology such as gas pocket is a notoriously challenging problem for high resolution imaging because it strongly reduces the amplitude and downgrade the imaging quality of deeper events. To compensate this attenuation effect, first we need to accurately estimate the attenuation model (Q). However, it is challenging to directly derive a laterally and vertically varying attenuation model in depth domain from the surface reflection seismic data. This research paper proposes a method to derive the anomalous Q model corresponding to strong attenuative media from marine reflection seismic data using a deep-learning approach, the convolutional neural network (CNN). We treat Q anomaly detection problem as a semantic segmentation task and train an encoder-decoder CNN (U-Net) to perform a pixel-by-pixel prediction on the seismic section to invert a pixel group belongs to different level of attenuation probability which can help to build up the attenuation model. The proposed method in this paper uses a volume of marine 3D reflection seismic data for network training and validation, which needs only a very small amount of data as the training set due to the feature of U-Net, a specific encoder-decoder CNN architecture in semantic segmentation task. Finally, in order to evaluate the attenuation model result predicted by the proposed method, we validate the predicted heterogeneous Q model using de-absorption pre-stack depth migration (Q-PSDM), a high-resolution depth imaging result with reasonable compensation is obtained.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.