Abstract

N-doped porous biochar is a promising carbon material for supercapacitor electrodes due to its developed pore structure and high chemical activity which greatly affect the capacitive performance. Predicting the capacitance and exploring the most influential factors are of great significance because it can not only avoid the trial-and-error experiments but also provide guidance for the synthesis of biochar with the aim of capacitance enhancement. In this study, a CNN model with ReLU activation function was established using DenseNet architecture for specific capacitance prediction. The importance and impacts of the physiochemical properties of N-doped porous biochar to the capacitance were revealed. With the guidance of the model, N-doped porous biochar samples with high capacitance were synthesized, the data of which were further used for model validation. This study provides not only a deep learning model which can be used in practice for capacitance prediction but also directions for the synthesis of N-doped porous biochar with high capacitive performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.