Abstract

Photoacoustic microscopy (PAM) is a non-invasive, label-free functional imaging technique that provides high absorption contrast with high spatial resolution. Spatial sampling density and data size are important determinants of the imaging speed of PAM. Therefore, undersampling methods that reduce the number of scanning points are typically adopted to enhance the imaging speed of PAM by increasing the scanning step size. For the reason that undersampling methods sacrifice spatial sampling density, deep learning-based reconstruction methods have been considered as an alternative; however, these methods have been applied to reconstruct the two-dimensional PAM images, which is related to the spatial sampling density. Therefore, by considering the number of data points, data size, and the characteristics of PAM that provides three-dimensional (3D) volume data, in this study, we newly reported deep learning-based fully reconstructing the undersampled 3D PAM data, which is obtained at the actual experiment (i.e., not manually generated). The results of quantitative analyses demonstrate that the proposed method exhibits robustness and outperforms interpolation-based reconstruction methods at various undersampling ratios, enhancing the PAM system performance with 80-times faster-imaging speed and 800-times lower data size. Moreover, the applicability of this method is experimentally verified by upscaling the sparsely sampled test dataset. The proposed deep learning-based PAM data reconstructing is demonstrated to be the closest model that can be used under experimental conditions, effectively shortening the imaging time with significantly reduced data size for processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.