Abstract

Deep learning, also known as deep machine learning or deep structured learning based techniques, have recently achieved tremendous success in digital image processing for object detection and classification. As a result, they are rapidly gaining popularity and attention from the computer vision research community. There has been a massive increase in the collection of digital imagery for the monitoring of underwater ecosystems, including seagrass meadows. This growth in image data has driven the need for automatic detection and classification using deep neural network based classifiers. This paper systematically describes the use of deep learning for underwater imagery analysis within the recent past. The analysis approaches are categorized according to the object of detection, and the features and deep learning architectures used are highlighted. It is concluded that there is a great scope for automation in the analysis of digital seabed imagery using deep neural networks, especially for the detection and monitoring of seagrass.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.