Abstract

Photoacoustic tomography (PAT) is a non-invasive, non-ionizing hybrid imaging modality that holds great potential for various biomedical applications and the incorporation with deep learning (DL) methods has experienced notable advancements in recent times. In a typical 2D PAT setup, a single-element ultrasound detector (USD) is used to collect the PA signals by making a 360° full scan of the imaging region. The traditional backprojection (BP) algorithm has been widely used to reconstruct the PAT images from the acquired signals. Accurate determination of the scanning radius (SR) is required for proper image reconstruction. Even a slight deviation from its nominal value can lead to image distortion compromising the quality of the reconstruction. To address this challenge, two approaches have been developed and examined herein. The first framework includes a modified version of dense U-Net (DUNet) architecture. The second procedure involves a DL-based convolutional neural network (CNN) for image classification followed by a DUNet. The first protocol was trained with heterogeneous simulated images generated from three different phantoms to learn the relationship between the reconstructed and the corresponding ground truth (GT) images. In the case of the second scheme, the first stage was trained with the same heterogeneous dataset to classify the image type and the second stage was trained individually with the appropriate images. The performance of these architectures has been tested on both simulated and experimental images. The first method can sustain SR deviation up to approximately 6% for simulated images and 5% for experimental images and can accurately reproduce the GTs. The proposed DL-approach extends the limits further (approximately 7% and 8% for simulated and experimental images, respectively). Our results suggest that classification-based DL method does not need a precise assessment of SR for accurate PAT image formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call