Abstract
An intelligent lithology identification method is proposed based on deep learning of the rock microscopic images. Based on the characteristics of rock images in the dataset, we used Xception, MobileNet_v2, Inception_ResNet_v2, Inception_v3, Densenet121, ResNet101_v2, and ResNet-101 to develop microscopic image classification models, and then the network structures of seven different convolutional neural networks (CNNs) were compared. It shows that the multi-layer representation of rock features can be represented through convolution structures, thus better feature robustness can be achieved. For the loss function, cross-entropy is used to back propagate the weight parameters layer by layer, and the accuracy of the network is improved by frequent iterative training. We expanded a self-built dataset by using transfer learning and data augmentation. Next, accuracy (acc) and frames per second (fps) were used as the evaluation indexes to assess the accuracy and speed of model identification. The results show that the Xception-based model has the optimum performance, with an accuracy of 97.66% in the training dataset and 98.65% in the testing dataset. Furthermore, the fps of the model is 50.76, and the model is feasible to deploy under different hardware conditions and meets the requirements of rapid lithology identification. This proposed method is proved to be robust and versatile in generalization performance, and it is suitable for both geologists and engineers to identify lithology quickly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Rock Mechanics and Geotechnical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.