Abstract

In this paper, a two-level deep learning framework is presented to model human information foraging behavior with search engines. A recurrent neural network architecture is designed using LSTM as the base unit to explicitly consider the temporal and spatial dependencies of information scents, the key concept in Information Foraging Theory. The target is to predict several major search behaviors, such as query abandonment, query reformulation, number of clicks, and information gain. The memory capability and the sequence structure of LSTM allow to naturally mimic not only what users are perceiving and performing at the moment but also what they have seen and learned from the past during the search dynamics. The promising results indicate that our information scent models with different input variations were better, compared to the state-of-the art neural click models, at predicting some search behaviors. When incorporating the knowledge from a previous query in the same search session, the prediction of current query abandonment, pagination, and information gain has been improved. Compared to the well known neural click models that model search behaviors under a single search query thread, this study takes a broader view to consider an entire search session which may contain multiple queries. More importantly, our model takes the search result relevance pattern on the Search Engine Results Pages (SERP) as a whole as the information scent input to the deep learning model, instead of considering one search result at each step. The results have insights on the impact of information scents on how people forage for information, which has implications for designing or refining a set of design guidelines for search engines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call