Abstract
Convolutional Neural Network (CNN) has gained attractions in image analytics and speech recognition in recent years. However, employing CNN for classification of graphs remains to be challenging. This paper presents the Ngram graph-block based convolutional neural network model for classification of graphs. Our Ngram deep learning framework consists of three novel components. First, we introduce the concept of $n$ -gram block to transform each raw graph object into a sequence of $n$ -gram blocks connected through overlapping regions. Second, we introduce a diagonal convolution step to extract local patterns and connectivity features hidden in these $n$ -gram blocks by performing $n$ -gram normalization. Finally, we develop deeper global patterns based on the local patterns and the ways that they respond to overlapping regions by building a $n$ -gram deep learning model using convolutional neural network. We evaluate the effectiveness of our approach by comparing it with the existing state of art methods using five real graph repositories from bioinformatics and social networks domains. Our results show that the Ngram approach outperforms existing methods with high accuracy and comparable performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Knowledge and Data Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.