Abstract
Cryo electron microscopy (cryo-EM) allows high-resolution 3D reconstruction of biomolecular structures from highly noisy 2D parallel-beam projection images containing tens of thousands of copies of the same macromolecular complex but at different random orientations and positions. However, biomolecular complexes are not rigid but flexible entities that change their conformations gradually (continuous transition with many intermediate states) to accomplish biological functions (e.g., DNA replication, protein synthesis, etc.). The determination of the full distribution of conformations (conformational space or landscape) from cryo-EM images is challenging but could provide insights into working mechanisms of the complexes. In this paper, we present a method for conformational space determination, which uses deep learning in combination with cryo-EM image analysis and normal mode analysis (molecular mechanics simulation), where the amplitudes of normal modes are used as parameters of the elastic 3D shapes of complexes (the parameters determining the conformation). We show the performance of this new method using synthetic cryo-EM data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.