Abstract

Abstract Conceptual design is the foundational stage of a design process, translating ill-defined design problems to low-fidelity design concepts and prototypes. While deep learning approaches are widely applied in later design stages for design automation, we see fewer attempts in conceptual design for three reasons: 1) the data in this stage exhibit multiple modalities: natural language, sketches, and 3D shapes, and these modalities are challenging to represent in deep learning methods; 2) it requires knowledge from a larger source of inspiration instead of focusing on a single design task; and 3) it requires translating designers’ intent and feedback, and hence needs more interaction with designers and/or users. With recent advances in deep learning of cross-modal tasks (DLCMT) and the availability of large cross-modal datasets, we see opportunities to apply these learning methods to the conceptual design of product shapes. In this paper, we review 30 recent journal articles and conference papers across computer graphics, computer vision, and engineering design fields that involve DLCMT of three modalities: natural language, sketches, and 3D shapes. Based on the review, we identify the challenges and opportunities of utilizing DLCMT in 3D shape concepts generation, from which we propose a list of research questions pointing to future research directions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.