Abstract
AbstractThe problem addressed in this study is the limitations of previous works that considered electrocardiogram (ECG) classification as a multiclass problem, despite many abnormalities being diagnosed simultaneously in real life, making it a multilabel classification problem. The aim of the study is to test the effectiveness of deep learning (DL)-based methods (Inception, MobileNet, LeNet, AlexNet, VGG16, and ResNet50) using three large 12-lead ECG datasets to overcome this limitation. The define-by-run technique is used to build the most efficient DL model using the tree-structured Parzen estimator (TPE) algorithm. Results show that the proposed methods achieve high accuracy and precision in classifying ECG abnormalities for large datasets, with the best results being 97.89% accuracy and 90.83% precision for the Ningbo dataset, classifying 42 classes for the Inception model; 96.53% accuracy and 85.67% precision for the PTB-XL dataset, classifying 24 classes for the Alex net model; and 95.02% accuracy and 70.71% precision for the Georgia dataset, classifying 23 classes for the Alex net model. The best results achieved for the optimum model that was proposed by the define-by-run technique were 97.33% accuracy and 97.71% precision for the Ningbo dataset, classifying 42 classes; 96.60% accuracy and 83.66% precision for the PTB-XL dataset, classifying 24 classes; and 94.32% accuracy and 66.97% precision for the Georgia dataset, classifying 23 classes. The proposed DL-based methods using the TPE algorithm provide accurate results for multilabel classification of ECG abnormalities, improving the diagnostic accuracy of heart conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.